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Theory and practice
I The theory of constructive & computable mathematics:

I Structures from analysis and topology are studied.
I Informal descriptions of algorithms via Turing machines.
I Deals mostly with: “What can be computed?”
I Efficiency of computation is desired.

I Practice of computing:
I Emphasis on discrete mathematics.
I Implementations of practical data structures and algorithms.
I Deals with: “How fast can we compute?”
I Speed is essential.



Can we bring constructive math closer to practice?
I Sacrificing performance for correctness is unacceptable.

I Currently programs extracted from formal proofs are
inefficient.

I Programmers should be free to implement efficient code.
I Provide support for proving correctness of implementation.

I It is tricky to correctly implement structures from analysis
and topology.

I We should link mathematical models with practical
programming.

I Give programmers tools that automate tasks.



Our contribution
I A theory of representations based on Objective Caml.

I We replaced Turing machines (type I and II) with a
real-world programming language.

I Representations can actually be implemented.
I Other programming languages could be used.

I But we do not work with representations directly.
I Cumbersome and generally too low a level of abstraction to

do mathematics.
I How do we know which representation of a given set is the

right one?
I Instead, we use representations as a model in which to

interpret constructive mathematics.
I Use Kleene’s realizability interpretation adapted to OCaml.
I The translation of a constructive theory is a specification

describing how to implement it in OCaml.

I Most importantly, we built a tool RZ which automatically
translates constructive logic to representations.



Representations
I Representations are a successful idea in computable

mathematics:
I numbered sets,
I Type Two Effectivity representations,
I domain-theoretic representations,
I equilogical spaces.

I Phrased in various forms:
I partial surjections,
I partial equivalence relations,
I modest sets,
I assemblies,
I multi-valued partial surjections,
I realizability relations.

I Can be described to programmers without much trouble.



Representations in Objective Caml
I A representation δ : t→ X consists of:

I represented set X
I representing datatype t
I partial surjection δ : t→ X

I Define the partial equivalence relation (per) ≈ on t by

u ≈ v ⇐⇒ u, v ∈ dom(δ) ∧ δ(u) = δ(v) .

I We may recover δ : t→ X from (t,≈) up to isomorphism:

‖t‖ = {u ∈ t | u ≈ u}
X ∼= ‖t‖/≈, dom(δ) = ‖t‖, δ(u) = [u]≈

I Note: δ and ≈ are not required to be computable, they live
“outside” the programming language.



Constructions of representations
Representations, together with a suitable notion of morphisms,
form a rich category with many constructions:

I products A× B and disjoint sums A + B,
I function spaces A→ B,
I dependent sums Σi∈AB(i) and products Πi∈AB(i),
I subsets {x : A | φ(x)},
I quotients A/ρ,
I but no powersets.

This is a convenient “toolbox” for constructive mathematics.



Realizability interpretation of logic
I A formalization of Brouwer-Heyting-Kolmogorov

interpretation of intuitionistic logic.
I Validity of a proposition φ is witnessed by a realizer:

r 
 φ “r is computational witness of φ”

I Note: r could be any OCaml value, need not correspond to
a proof under the Curry-Howard correspondence.

I The type of r and 
 are defined inductively on the
structure of φ, e.g.:

〈r1, r2〉 
 φ1 ∧ φ2 iff r1 
 φ1 and r2 
 φ2

r 
 φ =⇒ ψ iff whenever s 
 φ then r(s) 
 ψ

· · · · · ·



RZ
I Input: one or more theories
I Output: OCaml module type specifications
I Translation has several phases:

1. Type-checking: does the input make sense?
2. Translation via realizability interpretation
3. Thinning: remove computationally irrelevant realizers
4. Optimization: perform further simplifications to output
5. Phase splitting (will not explain here, read the paper)



Input
A theory consists of declarations, definitions, and axioms.

Definition Ab :=
thy

Parameter t : Set.
Parameter zero : t.
Parameter neg : t → t.
Parameter add : t * t → t.
Definition sub (u : t) (v : t) := add(u, neg v).
Axiom zero_neutral: ∀ u : t, add(zero,u) = zero.
Axiom neg_inverse: ∀ u : t, add(u,neg u) = zero.
Axiom add_assoc:
∀ u v w : t, add(add(u,v),w) = add(u,add(v,w)).
Axiom abelian: ∀ u v : t, add(u,v) = add(v,u).

end.

Theories can be parametrized, e.g., the theory of a vector space
parametrized by a field, VectorSpace(F:Field).



Translation and output
I Consider the input:

Axiom lpo : ∀ f : nat → nat,
[‘zero: ∀ n : nat, f n = zero] ∨
[‘nonzero: ¬ (∀ n : nat, f n = zero)].

I In the output we get a value declaration and an assertion:
val lpo : (nat → nat) → [‘zero | ‘nonzero]
(** assertion lpo :
∀ (f:‖nat → nat‖),

(match lpo f with
‘zero ⇒ ∀ (n:‖nat‖), f n ≈nat zero

| ‘nonzero ⇒ ¬ (∀ (n:‖nat‖), f n ≈nat zero))

*)

I The value lpo is the computational content of the axiom.
I An implementation of lpo must satisfy the assertion.
I Assertion is free of computational content, thus its

constructive and classical readings agree.



Example: “All functions are continuous”
I Input:

Axiom modulus:
∀ f : (nat → nat) → nat, ∀ a : nat → nat,
∃ k : nat, ∀ b : nat → nat,
(∀ m : nat, m ≤ k → a m = b m) → f a = f b.

I RZ output:
val modulus : ((nat → nat) → nat) → (nat → nat) → nat
(** Assertion modulus =
∀ (f:‖(nat → nat) → nat‖, a:‖nat → nat‖),
let p = modulus f a in p : ‖nat‖ ∧
(∀ (b:‖nat → nat‖),

(∀ (m:‖nat‖), m ≤ p → a m ≈nat b m) →
f a ≈nat f b) *)

I Implementation:
let modulus f a =

let p = ref 0 in
let a’ n = (p := max !p n; a n) in

ignore (f a’) ; !p



Remarks
I We have implemented real numbers using RZ:

I see Bauer & Kavkler at CCA 2007.
I We would like to implement more advanced structures:

I manifolds, Hilbert spaces, analytic functions, . . .
I we expect these to be painfully slow at first.

I Even if you do not want to implement anything, you can
use RZ to automatically compute representations from
constructive definitions.

I It would be interesting to connect RZ with a tool that
allows formal verification of correctness, such as Coq.


